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We consider quantum systems ofn indistinguishable spinless particles, constrained 
to closed compact surfaces and satisfying fractional statistics (anyons). We 
question the traditional choice of a configuration space, and show that a theory 
maintaining the diagonal is possible. Such a theory leads naturally to questions 
in algebraic geometry involving desingularizations of certain algebraic varieties. 
The desingularizations induce the possibility of an "exotic exclusion principle" 
for anyons, wherein multiple occupancy is not excluded in general. 

1. T H E  STANDARD T H E O R Y  

1.1. The Classical n-Body Configuration Space 

In studying the kinematics of n-body systems in classical mechanics 
one traditionally identifies the coordinates of  the n-body system in physical 
space with the coordinates of a single virtual object in so-called configuration 
space, which is in general a subvariety of  the higher dimensional space R 3n. 
The quantum theory of  anyons, quasiparticles in two-dimensional space, 
began with an analogous step (Wilczek, 1990). 

We consider such a theory of systems of n -> 2 indistinguishable spinless 
particles constrained to a compact Riemann surface M; unless explicitly 
stated, M will be assumed to be without boundary. It has become standard 
to work with the configuration space C,(M) of  such a system defined as 
follows (Birman, 1975). Let M" be the n-fold Cartesian product of M with 
itself, and let 8n denote the subset of M n consisting of all points where two 
or more particle positions coincide (i.e., the diagonal). Then 

C . ( M )  = ( M n \ ~ . ) / S .  (1.1) 
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where Sn denotes the group of permutations of n symbols, the slash (/) 
designates the formation of a quotient modulo Sn, and the backslash (\) 
designates the deletion of the subset ~n- 

The space Cn(M) has been studied extensively in algebraic topology in 
connection with the theory of braids and knots and also in connection with 
the mapping class groups of Riemann surfaces. The fundamental group of 
Cn(M) is precisely the n-braid group Bn(M) of M (Birman, 1975). Given a 
Riemannian metric on M, C,(M) inherits the corresponding product metric 
which lifts to a Riemannian metric on the universal covering space t~n(M) 
of C,(M). The deck transformations, i.e., elements of B~(M), are a set of 
isometries of C~(M). 

More recently the theory of anyons has brought about further study of 
Cn(M), this time involving also geometric analysis, in particular a theory of 
twisted Laplacians on C~(M) (Baker et al., 1993), which occur in the theory 
as follows. 

Let Xk: B~(M) --~ U(k) be an irreducible unitary representation, and let 
E(Xk) be the canonical flat vector bundle over Cn(M) associated with this 
representation (Milnor, 1958). It has been proposed in Imbo et al. 0990), 
for example, that natural candidates for stationary wave functions for the 
system of n indistinguishable quantum particles on M, satisfying fractional 
statistics, are smooth sections of the bundle E(• or, equivalently, smooth, 
Xk-equivariant, Ck-valued functions on Cn(M). 

The statistics or quantization is determined by the choice of representa- 
tion Xk, and in this context, the phenomenon of phase changes of the wave 
function on interchanging particle positions translates as the Xk-equivariance. 
A Ck-valued function t~ on C,,(M) is • provided 

~(gz) = • (1.2) 

for all z E Cn(M) and for all g ~ Bn(M) 

Henceforth, we write the equivariance condition as ~ o g = • In the 
Schr6dinger theory one requires that the wave functions satisfy a Schr6dinger 
wave equation. For the stationary wave functions this boils down to a spec- 
tral problem 

z~d) = hd) (1.3) 

where A is the Laplacian on Cn(M), the lift of the 0 Laplacian on Cn(M). 
Observe that from a function-theoretic viewpoint all of the above theory 

can, and in fact only needs to be carded out on the covering C,(M, Xk) of 
Cn(M) corresponding to the normal subgroup Ker(• of B,,(M). Here the 
group of deck transformations is just the image of • In such a program, a 
system of n-indistinguishable bosons corresponds to the trivial U(1) represen- 
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tation and that of fermions corresponds to the U(1) representation onto the 
subgroup { -  1, 1 }. 

The adoption of (1.1) as the configuration space for a quantum theory 
of particles obeying fractional statistics seems to have been institutionalized 
through a sequence of articles beginning with Laidlaw and DeWitt (1971) 
and Leinaas and Myrheim (1977). It can be seen throughout almost all 
subsequent work, even in theories which were independently developed (Wilc- 
zek, 1990). The exclusion of the diagonal ~ in (1.1) by Leinaas and Myrheim 
seemed somewhat arbitrary. However, subsequently, a theoretical justification 
for the choice of Cn(M) as configuration space has been put forward by 
Goldin et al. (1980, 1981, 1983; Goldin and Sharp, 1983, 1991). 

The SchrOdinger picture outlined above, culminating in (1.2), (1.3), 
proposes that one works with wave functions which are multivalued on the 
configuration space C,(M) and single valued on the cover C~(M, Xk). This 
is an example of a general program called "quantization on multiply connected 
spaces." With this as background, we raise certain questions concerning 
the choice of C~(M) as configuration space, plus questions surrounding the 
resulting SchrOdinger picture, (1.2), (1.3). The questions are aimed simultane- 
ously at the mathematical difficulties as well as the physical consistency of 
the resulting theory. 

1.2. Questions Surrounding the Configuration Space 

The ability to solve the SchrOdinger wave equation gives a program for 
analyzing the quantum theory of anyons, advocated, for example, in Imbo 
et al. (1990). There are, however, serious mathematical and physical questions 
to be addressed in that program. 

First, the choice of the configuration space Cn(M) has the immediate 
consequence that the particles must satisfy an exclusion principle wherein 
no two particles can occupy the same position. Now, multiple occupancy is 
possible for bosons. Thus, since anyons are particles conjectured to have 
statistics which interpolate between those of bosons and fermions, it would 
seem reasonable to consider, at least in the case of U(1) representations, that 
the exclusion principle satisfied by anyons might also interpolate between 
that for bosons and that for fermions. From this standpoint, the exclusion of 
the diagonal ~n from the configuration space is a restrictive assumption in 
the theory and seems to be an undesirable starting point. 

Our second set of questions has also to do with the exclusion of the 
diagonal. The study of the wave equation for the multivalued wave functions 
on Cn(M) leads to considering a spectral problem (1.3) for a twisted Laplacian 
on Cn(M) (Baker et al., 1993). For our present purposes, it suffices to restrict 
consideration to the case of cyclic U(1) representations. 



2438 Baker and Mulay 

Here we see that for each of the extremal cases 0 = 0 (bosons) and 0 
= ,rr (fermions) the Hamiltonian possesses a pure point spectrum, due to the 
assumed compactness of the surface M. The complete system of eigenfunc- 
tions of the scalar Laplacian on M orthonormal in L2(M) corresponds to the 
set of pure energy states of the one-particle problem, i.e., n = 1. For a system 
of n bosons, the complete basis of orthonormal eigenfunctions on L2(Mn/Sn) 
is obtained by taking symmetrized products of n one-particle eigenstates: an 
elementary procedure analogous to "separation of variables." For a system 
of n fermions, one obtains a complete basis of antisymmetric eigenfunctions 
on Mn/Sn, and thus on Cn(M), by taking antisymmetric products of n one- 
particle eigenstates. These are the only two U(1) representations for which 
the exact energy levels and the corresponding wave functions are known for 
ideal anyons (i.e., no interactions). Even for a system of as few as three ideal 
anyons on a compact surface it is not known, in the intermediate case 0 < 
0 < "rr, whether the Hamiltonian has a pure point spectrum. 

In general, the fact that the configuration space Cn(M) is noncompact 
and noncomplete renders questions surrounding the spectral problem quite 
complicated. The difficulties become apparent in the simplest case, treated 
in Baker et al. (1993); we briefly describe these results. 

We choose M in this case to be a bounded domain with smooth boundary 
0M in the Euclidean plane E z. In the coordinate system on C" we denote a 
genetic point by z = (zl . . . . .  z~), zi e C, and z* = (gl . . . . .  ~n) its conjugate. 

The Euclidean Laplacian A acting on C~(C ") is given by 

Af = 4 ~ OkO~f (1.4) 
k=l 

where Okf = OflOzk and O~f = OflOz~. The  diagonal is then given by 

~ = {Z = (zl . . . . .  z~) ~ M~: zi = zj for some i v~ j}  

If • "rrl(C~(M)) ---> U(1) is a finite, one-dimensional, irreducible repre- 
sentation, it corresponds to the choice of an integer m -> 1, with the corres- 
ponding cyclic group G m =  {exp(2"rrik/m), k = 0, 1 . . . . .  m - 1 } consisting 
of the m roots of unity. 

Let V." C~(M) ---) R be a real-valued function, V ~ C~(C~(M)),  and 
satisfies 

V(o'z,  o'Z*) = V(Z, Z*), Z E (Mn\~3n), for all cr E S, (1.5) 

V will play the role of a symmetric potential for the system of anyons. Let 
if': Cn(M, • ---> R denote the lift of V to the coveting space C,(M, • 

We seek eigenvalues k E C and eigenfunctions t~: C,(M, • ---> C which 
satisfy the Schrtdinger equation, 
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+ = on •  (1 .6)  

d) = 0 on I'n (1.'7) 

where I'. is the lift of the boundary Fn = OM". Equation (1.6) is merely (1.3) 
with a potential. 

We also require that ~ satisfy the fractional statistics corresponding to 
the choice of representation • and so (1.2) becomes 

~('yz, "yz*) = X("/)~(z, z*) for all "y E Bn(M ) (1.8) 

Gm-Equivariant functions on Cn(M) satisfying (1.8) are all naturally 
constructable using the discriminant. Let q~: C n --> C be defined by 

q~(zl . . . . .  z .)  = ~I (zi - z i) (1.9) 
i<j 

Let q~m: Cn(M, X) ~ C denote any one of the m roots of the discriminant 
[q~(z)] 2 according to q~m(Z) = [q~(Z)] 2/m- Since q~2 never vanishes on C.(M, X), 
given any equivariant ~ satisfying (1.2), we may consider the map 

j~ C~(M, • ~ C given by f ( z ,  z*) = ~J(z, z*)/q~,~(z) 

Clearly, f is an invariant function, f ( trz ,  trz*) = ff(z, z*) for all (r ~ Bn(M), 
for z ~ C.(M, X), and thus corresponds to an invariant function F: C. (M)  

C defined by 

f ( z ,  z*) = (F o "rr)(z, z*) 

where "rr: C.(M, X) --~ C . (M)  is the natural projection. 
Now setting a = 2/m, a simple computation using (1.4)-(1.9) shows that 

= (q~m)(F ~ 70: C.(M, X) --~ C 

is an eigenfunction with eigenvalue h E C, satisfying (1.6)-(1.8), if and 
only if F: (M"\3.)  --~ C satisfies equivalently 

- A F  - 4__~ ~ 0_~_~ O_._F_F + VF = hE  on (M"\3.)  (1.10) 
q~ ~=1 Ozk 0-~ 

F = 0 on F.  (1.11) 

F(~rz, crz*) = F(z, z*) for all cr ~ S. (1.12) 

The peculiarities of the more transparent spectral problem (1.10)-(1.12) 
lie in the fact that the space (M"\3.)  is noncompact and incomplete. In 
particular, the subset 3. of real codimension 2 has been deleted from M". 
Furthermore, from (1.9), the coefficients of the elliptic operator appearing 
in (1.10) become singular on neighborhoods of the diagonal 3.. These singu- 
larities are inherited from the problem on the covering space C.(M, X); 
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specifically, because of (1.8), the group action of B n ( M )  has fixed points on 
the diagonal g,. The singularities are in this sense inherent to the problem 
(1.3) or (1.6), by the deletion of gn. 

In Baker et al. (1993) it is proved that if V is a hard-core repulsive 
potential of a certain type, then (1.10)-(1.12) possess a pure point spectrum 
of real eigenvalues and a corresponding set of equivariant eigenfunctions 
satisfying (1.6)-(1.8) which form an orthonormal and complete set in an 
appropriate Hilbert space. These eigenfunctions vanish on the lift of the 
diagonal gn and decay exponentially to zero on neighborhoods of gn. In a 
certain sense the interaction via the potential V compensates for the non- 
compactness and incompleteness of Cn(M). 

Loss and Fu (1991) have proposed that without the interaction of a hard- 
core repulsive potential, the SchrOdinger picture is not properly posed. Their 
conclusions are based on computations and analysis of virial coefficients for 
both an interacting anyon gas with hard-core potential and for a noninteracting 
anyon gas. The spectral problem for the case without such a potential, i.e., 
V = 0, m --> 3, is completely open. 

Although these questions pose a very interesting line of investigation, 
it is of course also natural to ponder a theory which uses a configuration 
space other than C,(M), for example, one where the configuration space is 
the entire symmetric product S~(M) = M n [ S n  . This is the central issue of the 
present article. 

2. GENERALIZED MULTIVALUED WAVE FUNCTIONS 

2.1. A Generalized Configuration Space and Its Branched Cover 

Throughout the rest of the paper, for concreteness, we shall consider 
only irreducible U(1) representations of Bn(M). In such cases, since the 
surface M is compact, it is well known (Thouless and Wu, 1985) that if M 
has genus g ~ 1, then B,(M) admits only two representations, the trivial one 
corresponding to bosons and that corresponding to { 1, - 1  }, i.e., fermions. 
These two cases have already been discussed in Section 1.2. Thus, without 
any loss, we may take M to be the 2-sphere S 2. We explore the possibilities 
of a theory which possesses at least the following properties: 

(i) The configuration space should not dictate a priori that anyons satisfy 
the same exclusion principle as do fermions, as in the choice of Cn(M). The 
precise exclusion principle for anyons should be deduced from the general 
theory as opposed to being imposed. 

(ii) The SchrOdinger picture should be amenable to analysis: in particular 
the associated spectral problem for the Hamiltonian should be tractable. 
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In order to achieve this, we reexamine an assumption of the standard 
theory. The fact that the phenomenon of fractional statistics was first repre- 
sented using a multiply connected configuration space has somehow led to 
the idea that a multiply connected configuration space is indispensable for 
fractional statistics. Our point of view is more general; what is in fact indis- 
pensable in the theory is the existence of a domain for the wave function on 
which it is single valued together with a corresponding base or configuration 
space on which it will be multivalued. These we refer to the salient features 
of the theory. They are indeed consequences of the choice of Cn(M) as 
configuration space. However, starting with these features, we wish to show 
that they can be realized with the choice of a more general configuration 
space. Thus, the relevant questions are: 

(iii) Does there exist a canonical choice of a compact, complete, smooth 
domain for our wave functions, i.e., a space where the wave functions are 
single valued? A compact, complete space has advantages for the spectral 
problem. Having chosen a domain and base configuration space on which 
wave functions are multivalued, to what extent does this domain determine 
the quantum physics of anyon interaction, for example, an exclusion principle? 

Our theory described below provides answers to the issues (i)-(iii) for 
the case k = 1 with Sn(M) as configuration space. It points toward the 
possibility of what we refer to as an "exotic exclusion principle" for anyons 
on S 2 wherein multiple occupancy is not excluded in general. Our wave 
functions are constructed from solutions of Schrtidinger equations on compact 
smooth projective varieties, as opposed to the inherently singular elliptic 
equations on noncompact incomplete manifolds encountered in the standard 
theory. They are referred to as "generalized multivalued wavefunctions." 

We thus begin with the choice of the symmetric product Sn(M) as 
configuration space. When M = S z is thought of as the complex projective 
line, the space Sn(M) is naturally identified with the n-dimensional complex 
projective space CP n (Griffiths and Harris, 1978). Under this identification 
the diagonal 8n gets identified with the "discriminant hypersurface" A n = 0. 
The next section is devoted to such details. 

It is well known that the U(1) representations of B,(M) are the homomor- 
phisms onto the cyclic groups G,n of the mth roots of unity, where m is a 
positive integer dividing 2(n - 1) (Thouless and Wu, 1985). From the 
function-theoretic perspective outlined above, the physics of multivalued 
wave functions is captured by the geometry of the cyclic coverings of the 
configuration space. With C~(M) as the configuration space, such cyclic 
coverings exist and are n-dimensional complex manifolds. These are open 
subsets of branched coverings X,(M, m) of CP n, branched along the discrimi- 
nant hypersurface, with cyclic Galois groups G m. Note that unlike Cn(M), 
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our space Sn(M) is simply connected. In addition, by Picard's theorem (Abhy- 
ankar, 1959), the spaces X,,(M, m) are also simply connected. However, in 
general, Xn(M, m) is not a manifold; it has a set of singularities of complex 
codimension 2 consisting of the points lying above the singular points of the 
discriminant hypersurface. 

In this setting a system of n indistinguishable bosons on S 2 corresponds 
to single-valued wave functions on CP n. Systems of n indistinguishable 
fermions correspond to double-valued wave functions on CP", i.e., single- 
valued functions on Xn(M, 2). 

Since Xn(M, m) have singularities, at least for n > 3, there are formidable 
obstructions to formulating analytical problems on Xn(M, m), such as the 
sought-after Schrtdinger theory with Gm-equivariant functions on Xn(M, m). 
We propose instead what would seem from a mathematical viewpoint to be 
the next best thing, to choose as a domain of our wave functions a "canonical" 
desingularization of Xn(M, m) embedded in complex projective space. These 
desingularizations of Xn(M, m) naturally carry an induced Gin-action. There 
is by now a well-established "theme" in the study of singular varieties, 
initiated by MacPherson (1984), which attempts to obtain information on a 
singular variety by studying analytical and topological data of desingulariz- 
ations of the variety (Fox, Haskell, and Pardon, 1988). 

Without any loss, we can focus attention on the case m = 2(n - 1). 
Henceforth, for simplicity, we denote the space X,(M, 2(n - 1)) by X ("~ and 
G~(n-1) by G. In the next section we construct explicitly canonical desingular- 
izations of spaces X (n) for small values of n. Although by the grand desingulari- 
zation theorem of Hironaka (1964) the existence of a desingularization of 
X (n~ is guaranteed, the problem of constructing a canonical desingularization, 
for general n, seems to be unresolved. In Section 3 we present the computa- 
tions for canonical desingularizations for the cases n -< 4. Our computations 
show that canonical desingularizations are computable for small n, but a 
method which would produce a canonical desingularization for any n is yet 
to be developed. Nonetheless, our computations for n <- 4 leave us optimistic; 
we leave the general question for the future. 

Recently, the problem of explicitly resolving the singularities of symmet- 
ric products has been raised in a different context by Fulton and McPherson 
(1994). In general that problem also remains open. 

2.2. An Exotic Exclusion Principle 

We proceed to discuss the consequences of our choice of Sn(M) as the 
configuration space, in particular, some essentials of a Schrtdinger theory. 

Let 7r denote the projection of X (n~ onto CP n. We let D~ C CP n denote 
the discriminant hypersurface, given by the equation A n = 0, and we set 
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R~ = 7r-~(D,) 

Also, let % denote the singular locus of D. and E.  C n'r-~(crn) be the singular 
locus of X (~). 

Let X~ ~ be a desingularization of X (~ (not necessarily a canonical one) 
with the associated birational map 0 from X~ n~ to X (n~. Since for n = 2, X (2) 
is itself nonsingular, we shall tacitly assume X~ 2~ = X (2~. Henceforth we focus 
on n - 3. The open set X~ ~) - 0-1(En) is isomorphic via 0 to the set X (n~ - 
E~. The closure of Rn - En in X~ ~) is called the proper transform of Rn in 
X~ "~ and we denote it by T (~. 

The Galois group G acts naturally on X~ ~). We shall use explicitly the 
fact that for all y ~ T (~), the orbit of y under the action of  G, i.e., the set 
{ g y l g  E G}, has cardinality strictly less than that of G. In other words, 
given y s T (~, there exists g ~ G, depending on y, such that g is not the 
identity and gy  = y. 

X~ ~ will be a smooth (closed) projective variety and hence can be viewed 
as a complex n-dimensional K~ihler manifold. Since G is a finite group, every 
choice of metric on X~ n) yields a corresponding G-invariant metric on X~ ~. 
When X~ ~) is a canonical embedded desingularization, it is accompanied by 
a natural choice of a K~ihler metric, namely the one induced by the embedding 
of  X~ n) into CP ~+~+k which is itself equipped with the Fubini-Study metric 
(Griffiths and Harris, 1978). There is of course no unique embedding of 
X~ ~) into higher dimensional projective spaces; however, it is well known 
that the metrics induced from different embeddings are quasi-isometric (Fox, 
Haskell, and Pardon, 1988). 

With this setting it is natural to study the singular variety X (n) through 
a desingularization X~ ~) ---> X (~, as they are intricately related. A flavor of  
this is given by the following. It follows from a theorem of Pardon and Stem 
(1991) that the L 2 - 0 cohomology groups of X (') - E~, with Dirichlet 
boundary conditions, H ~ q ( x  (n) - En), are birational invariants of  X ("). In fact 
we have 

H~sq(x(n) - ]~n) ~ H~ 0 <-- q <-- n (2.t) 

where X (") --+ Xr n) is any resolution of singularities of X (") and H~ n)) is 
the usual Dolbeault cohomology group of the smooth variety X~ n). As a 
consequence of (2.1), the arithmetic genus extends as a birational invariant, 

~D(x(n) -- •n) = ~ (-l)qH~Jq(x(n) - •n) -=- ~(x~n)) 
q=0 

(2.2) 

In the most general case we may regard X~ n~ as being equipped with a 
G-invariant Riemannian metric. Let A denote the corresponding Laplacian 
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acting on the linear space C~ of smooth G-equivariant complex-valued func- 
tions on X~ n). 

In this setting it is automatic (Griffiths and Harris, 1978) that A has a 
unique extension to L2(C~) with a pure point spectrum of nonnegative eigen- 
values, listed according to multiplicities 

0 <--- k 1 <~ k 2 ~< " ' "  -'--) ~ 

The corresponding set of L2(C~,) orthonormalized eigenfunctions {~j} satisfy 

A~j=  kj~j, j =  1,2 . . . .  

where j = 1, 2 . . . . .  and form a complete orthonormal system in L2(C~). It 
is clear that the G-equivariance of the eigenfunctions forces ~ j  to vanish 
on T (n). 

We let tbj denote the restriction of ~ j  to the open set X~ n) - 0-l(]~n). 
By composition, 

+j  = % o 0-~: X(") - X.  ~ C 

is a smooth G-equivariant complex-valued function. It is clear that ~bj vanishes 
on Rn - En. The system �9 = {~b/} is complete and orthonormal in L 2 ( X  (n)) 

with respect to the measure induced on X (") via 0. 
Now since �9 C C:~(X (n) - En), the eigenfunctions are extendible to 

functions on X ('), but they will not in general be continuous on X ("). Function 
values at points in ~, will depend on the stratum in ~, within which the point 
is approached. We interpret the family �9 to be the Schr6dinger system of 
generalized multivalued wave functions on S,(M). 

The antisymmetric wave functions for fermions discussed in Section 
2.1 vanish on ~ .  This fact is traditionally interpreted as the exclusion principle 
which prevents any two fermions from occupying the same spatial position 
(Canright and Johnson, 1994). We shall follow this tradition in observing the 
properties of our generalized wave functions. 

If such wave functions are used for a quantum theory, then as a conse- 
quence the fact that the members of �9 vanish on R, - E ,  can be interpreted 
as the preclusion of certain possible anyon configurations. Specifically, the 
possibility of exactly two anyons occupying the same position is excluded, 
but no other configuration is a priori excluded. Said in another way, anyons 
are permitted to coalesce in either two or more pairs at a time or in groups 
of three or more at a time. This is what we have already referred to as an 
"exotic exclusion principle" for anyons. It is our belief that the rules for 
occupancy or the exclusion principle for anyons are related to the nature of 
the singularities of the c o v e r  X (n). 

We note that, strictly speaking, the Pauli exclusion principle states that 
two particles cannot possess the same set of quantum numbers. What we 
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refer to in this paper as an "exotic exclusion principle" refers merely to the 
question of occupancy of spatial positions. For example, two bosons can 
occupy the same spatial position, but fermions may not: the question as to 
the precise rules for anyons remains open, but in the view of some physicists, 
it is appropriate to refer to the rules for occupancy of spatial positions as a 
type of "exclusion principle" (Haldane, 1991; Canright and Johnson, 1994). 
However, rules for occupancy of spatial positions are not to be assumed 
equivalent to the more encompassing Pauli exclusion principle. 

3. CANONICAL DESINGULARIZATIONS 

In this section we present the computations which produce canonical 
desingularizations of the singular cover X (n) for n - 4. These examples are 
instructive and demonstrate that canonical desingularizations are computable 
for small n. A general procedure for computing canonical desingularizations 
for general n is yet to be worked out. 

By CP n we denote the n-dimensional complex projective space. Let V 
be the C-vector space of binary forms of degree n with coefficients in C 
(the field of complex numbers). CW can be identified with P(V) via the 
correspondence which associates to a point with homogeneous coordinates 
(a0 . . . . .  an) the binary form 

F = aoX" + "'" + (n~a X"-~W + "'" + anY n 

For positive integers d, e with de <-- n, let W(n; d, e) be the subset of 
V consisting of those forms which are divisible by the eth power of a binary 
form of degree d. It follows that W(n; p, q) C W(n; r, s) whenever rs <-- pq 
and s -< q. Corresponding to W(n; d, e) there is an irreducible rational 
subvariety of Cpn; we denote this subvariety also by W(n; d, e), since no 
confusion seems likely. We shall tacitly assume n -> 2. 

Observe that W(n; 1, 2) is the discriminant hypersurface and W(n; 1, n) 
is the rational normal curve of degree n in CP n. For n -> 3, the discriminant 
hypersurface has singularities; its singular locus is the union of all the subvar- 
ieties W(n; d, e) with e -> 2 and d + e -> 4. 

Let A n denote the discriminant of F. Note that A n is unique up to a 
scalar factor, and it is an irreducible homogeneous polynomial in a0 . . . . .  an 
of degree 2(n - 1). The 2(n - 1)-cyclic cover of CW ramified along the 
discriminant hypersurface is the hypersurface X (n) in CW +1 defined by 

Z 2(~-1)- A. = 0 
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Here X (n) is a normal hypersurface and its singularities lie exactly above the 
singularities of An = 0. In the following we shall describe a canonical 
embedded desingularization of X (n) when n is either 3 or 4. 

It is necessary to set up some notation. For an irreducible subvariety N 
of a variety M let Ix(M, N) denote the multiplicity of M at the generic point 
of N. Let re (M)  be the maximum of Ix(M, N) where N ranges over all 
the irreducible subvarieties. By the maximum-multiplicity locus (henceforth 
abbreviated as mm-locus) of M we mean the union of all irreducible subvarie- 
ties N of M such that Ix(M, N) = re(M).  A pair (L*, M*) is said to be the 
canonical transform of a pair (L, M) of varieties if M is a (closed) subvariety 
of L, L* is the blowup of L along the mm-locus of M, and M* is the proper 
transform of M in L*. We make the convention that L* = L and M* = M 
in case M is nonsingular. 

Consider the sequence (Yi, Xi) where 0 --< i, Y0 = C Pn+t, X0 = X (n), 
and (Y/+I, X;+l) is the canonical transform of (Yi, Xi). Now we may ask: Does 
there exist an integer r such that (1) Xr is nonsingular? (2) Xr and Yr both 
are nonsingular? The answers to these questions are not known in general; 
but when n = 2, 3, or 4 we can easily verify that they are in the affirmative. 
When n = 2 our hypersurface X (n) is nonsingular and hence we may take r 
= 0. Below we shall discuss the cases n = 3, 4 in a little more detail. For 
the basic definitions and facts concerning the operation of  'blowing-up' the 
reader may refer to Abhyankar (1966) or Hartshorne (1977). 

3.1. T h e  Case  o f  n = 3 

We rename the homogeneous coordinates (ao, al, a2, a3) as (a, b, c, d). 
Then, up to a numerical factor, 

A 3 = (ad - b c )  2 - 4(ac  - bZ)(bd - c 2) 

is the discriminant. The singular locus of the discriminant surface A3 = 0 is 
the 'twisted cubic curve' R: (ad - bc) 2 = (ac - b 2) : (bd - c 2) = 0. It is 
easy to verify that every point of R is a double-point of the discriminant 
surface and R is the mm-locus. The singular locus of X0: Z 4 - A3 = 0 is 
the curve C: Z = (ad - bc) 2 = (ac - b 2) : (bd - c 2) = 0. It is also the 
mm-locus. Since C is nonsingular, the blowup Y~ of Y0 = Cp4 along C is 
also nonsingular. Let E denote the exceptional locus of this transformation. 
Let S~ be the proper transform of the surface S in Yo defined by 

( a d -  bc) 2 = ( a c -  b 2) = ( b d -  c 2) = 0 

(the cylinder over R). Then, m(X0 = 2 and the singular locus of X1 (=  the 
mm-locus of X0  is the curve X1 A E 7/S~. Again, X1 f? E 7/$l is nonsingular 
and hence so is Y2- Furthermore, X2 is nonsingular. 
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3.2. T h e  C a s e  o f  n = 4 

This case seems to have all the essential features of the general problem. 
Therefore in comparison to the cubic case it is somewhat more complicated. 

Rename the homogeneous coordinates (a0 . . . . .  a4) as (a, b, c, d, e). 
Then, up to a numerical factor the discriminant A 4 is 13 -- 27J 2, where 

I = ae - 4 b d  + 3c 2 and J -- ace  + 2 b c d  - c 3 - ad  2 - bZe 

are the two well-known invariants of the quartic. The singular locus of the 
discriminant-threefold A 4 : 0 is the union of the two irreducible surfaces 
W(4; 1, 3) and W(4; 2; 2). The surface W(4; 2; 2) is nonsingular and intersects 
W(4; 1, 3) along the later's singular locus, namely the nonsingular (rational 
normal) quartic curve W(4; 1, 4). We define W(4; 1, 3) (set theoretically) by 
I = J = 0. The hypersurface I = 0 is nonsingular. A nonsingular point of 
W(4; 1, 3) is also a nonsingular point of J -- 0; moreover, at such a point, 
hypersurfaces I = 0 and J = 0 meet nontangentially. W(4; 1, 4) is the m m -  

locus of the discriminant hypersurface, consisting of its triple points. 
Let WI, Wz, and C denote the subvarieties of X0: Z 6 - An = 0 lying 

above W(4; 1, 3), W(4; 2; 2), and W(4; 1, 4), respectively. Then, the singular 
locus of X0 is Wl U W2, m(X0) = 3, and the mm-locus of X0 is C. Let Tl, 
T2, and S denote the cylinders over W(4; 1, 3), W(4; 2; 2), and W(4; 1, 4), 
respectively. Observe that Wj = Tj fq X0 for 1 -----j -< 2 and C = S A X0. 

To study the desingularization process we may restrict our attention to 
the affine subspace A: a :~ 0 of CP 5 without any loss. Here, we are taking 
advantage of the fact that A4 is an invariant of the quartic. The affine coordi- 
nates on A are the ratios (bla, c/a, d/a, e/a, Z/a) .  Let 

f ( X )  = X 4 + 4 ( b / a ) X  3 + 6 ( c / a ) X  z + 4 ( d / a ) X  + (e/a) 

and let u, v, w be determined by the equation 

f ( X  - (b/a)) : X 4 + 6 u X  2 + 4 v X  + w 

Note that the affine coordinate ring of A is the polynomial ring 

A = C[b/a,  c/a, d/a, e/a, Z/a] = C[b*, u, v, w, z] 

where b* = b/a and z = Z/a. Polynomials 

i = w + 3 u  2 a n d j = u w -  u 3 -  v 2 

are the dehomogenizations o f / ,  J. Our hypersurface X0 corresponds to the 
ideal (z 6 - i 3 + 27jZ)A. The surfaces W(4; 1, 3), W(4; 2, 2) are defined by 
the ideals (i, j ) A  and (v, w - 9uZ)A, respectively, whereas the curve C is 
given by the ideal (u, v, w)A .  

Using the above ring-theoretic description, it is straightforward to verify 
the following five claims. 
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Let Ep C Yp denote the exceptional locus for the pth canonical transform. 
Also, let Tqp, Sp, and Wqp denote the proper transforms of Tq, S, and Wq in 
Yp, respectively. 

(1) For the first canonical transform, we have re(X0 = 3 and here the 
mm-locus of XL is the nonsingular surface Xl A E1 fh Tll. 

(2) For the second canonical transform, we still have m(Xz) = 3 and 
the mm-locus of Xz is the nonsingular surface X~ fq E2 f3 7"12. 

(3) After the third canonical transform there is a drop in the maximum 
multiplicity. We have re(X3) : 2 and the ram-locus of X3 is seen 
to be W13 U W23. Surfaces W13, W~2 are nonsingular, disjoint 
subvarieties of X3. 

(4) Next, m(X4) = 2. The mm-locus of X4 is the union of two disjoint 
nonsingular varieties X4 A E4 A T14 and X4 fq E4 N T24. 

(5) Finally, X5 is nonsingular. Since the center of each of the above 
blowing-ups is nonsingular, the variety Ys is also nonsingular. 

4. REMARKS 

4.1. 
Goldin et al. (1980, 1981, 1983; Goldin and Sharp, 1983, 1991) have 

proposed a theoretical justification for the exclusion of the diagonal ~,; this 
agrees with previous conclusions of Leinaas and Myrheim (1977) and Laidlaw 
and DeWitt (1971), who also argue for the exclusion of ~n, but from different 
mathematical perspectives. 

The solution of (1.3) for n bosons by symmetrization is a solution on 
Mn/s n. For e > 0, let N~(~n) = {y ~ Mn: d(y, ~n) < e} be a tubular 
neighborhood of the diagonal, where d(x, y) denotes Riemannian distance. 
The linear space of smooth functions 

C~(M") = {~ e C~(M~): ~JlNe(~n) = 0} 

satisfying Dirichlet boundary conditions on N~(~,), may be completed in an 
appropriate Sobolev space producing a Hilbert space of functions H~ satisfying 
the above boundary conditions. The Laplacian acting on C~(M n) or H, has 
a pure point spectrum of eigenvalues r with corresponding eigenfunctions 
in C~(Mn). 

Using a theorem of Chavel and Feldman (1978) in weak formulation, 
we can show that r converges, as e ---> 0, to the spectrum of the Laplacian 
on M ~, with matching multiplicities. Thus in this asymptotic, weak sense, 
we may obtain the spectrum or energy levels for bosons on M"/S, starting 
from the configuration space Cn(M) without the diagonal. For nontrivial 
equivariance, there is no analogous result. In this sense, bosons naturally 
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posed on Mn/Sn may be asymptotically included in the standard theory using 
Cn(M). However, what we advocate is a theory which starts off with Mn/Sn 
as the configuration space. 

4.2. 
The idea of quasiparticles satisfying fractional statistics has been success- 

fully used in explaining the fractional quantum Hall effect (Laughlin, 1990). 
There have also been attempts to explain the phenomenon of high-temperature 
superconductivity using anyons (Chen et al., 1989; Chern et al., 1991; Wil- 
czek, 1990). This program has met with much less success. Nonetheless the 
theory of anyons as it unfolds presents us with interesting mathematical 
questions. One such is as follows. 

It would be interesting to find, explicitly, nontrivial higher dimensional 
U(k), k > 1, unitary representations of the braid group Bn(M) where M is a 
closed Riemann surface. Burau and Gassner representations are known for 
R 2 (Jones, 1987, 1991), but even for S 2 these are not known. With such 
representations, it would in turn be interesting to see how much information 
on Bn(M) is captured in spectral invariants for the configuration space using 
some quantization procedure for anyons, i.e., "can one hear the braid group?" 
This question is hinted at in Jones (1991). 

4.3. 
Analytical structures on the desingularization X~ n) were defined through 

a K~ihler metric, to, induced on X~ "~ by the Fubini-Study metric on CP "+~+k 
via its embedding. This is obviously convenient and natural because of the 
canonical nature of the Fubini-Study metric. However, strictly speaking, the 
physical problem would itself provide a metric on M, which yields a metric 
on the dense open subset X~ ~) - 0-~(~)  of X~"); the relationship between 
this metric and the K~ler  metric to is another interesting issue warranting 
investigation. 

4.4. 
In concluding, we would like to emphasize that we have shown that 

breaking with tradition by using Sn(M) as configuration space leads to a rich 
mathematical framework interfacing with algebraic geometry. Our branched 
coverings are not manifolds, since they have singularities contained in pre- 
cisely the lift of the diagonal. It is our perspective that intricacies of the 
interaction physics of anyons seem related to the geometry of these singularit- 
ies. Our computations show that the presence of these singularities reveals 
the possibility of rules for occupancy of spacial positions, which we have 
referred to as an "exotic exclusion principle," for anyons on S z. Haldane 
(1991) has also proposed a "generalization of the Pauli principle" and Canright 
and Johnson (1994) have found applications of his "fractional exclusion 
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principle." His structures and techniques are quite different f rom ours; in 
contrast, our exclusion principle has been derived from purely geometric 
structures. 

4.5. 
It is considered important in the theory o f  Laidlaw and DeWitt  (1971) 

that if the space M on which the particles exist has dimension three or more, 
then the only possible statistics f rom irreducible U(1)  representations are 
those o f  bosons and fermions, as a simple consequence o f  the topology of  
C~(M). It is easily checked that in our setting, with Sn(M) as configuration 
space, the same conclusion holds. 
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